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INTRODUCTION

Approximately 50 % of breast cancer patients with estrogen receptor-positive (ER+)
tumors respond to antiestrogen therapy (1). Since expression of progesterone receptor (PgR) is
dependent upon ERcc activity, further selection of patients for ER-positive and PgR-negative
tumors enhances the breast cancer hormonal therapy response rate to nearly 80 % (2). The
estrogen-related receptor cc (ERRor), an orphan nuclear receptor that shares significant sequence
identity with ERcc and ERP3 but does not bind estrogens (3), has been shown to bind and activate
transcription through estrogen response elements (EREs) (4) as well as ERR-response elements
(ERREs) which are composed of an ERE half-site with a 5' extension of 3 base pairs (4, 5).
Hence, ERRa may modulate estrogen responsiveness, making it a plausible candidate for a novel
breast cancer prognosticator and target for therapy. First, ERs and ERRa may compete for
binding to a response element. Second, ERs and ERRa may selectively bind subelements within
a composite element to act in concert. Thus, we proposed to test whether ERRa plays an
important role in the development of some breast cancers by modulating or substituting for ER
activities. The specific questions addressed by this award are the following: (i) Does expression
of ERRa correlate with the expression of known breast cancer prognosticator genes and clinical
tumor properties? (ii) Which genes are potentially regulated by ERRcc and what are the
molecular mechanisms involved in ERRca modulation of estrogen-responsive transcription?
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BODY

Specific Aim I - To test whether alterations in expression, RNA splicin., phosphorylation
status, subeellular localization, or mutations in ERRa sifznificantly correlate with the
development of some breast cancers. (A) Assays will be developed with human mammary
carcinoma MCF-7 cell derivatives in Aim II to characterize ERRa RNA and protein
abundance, possible splicing variants, possible phosphorylation isoforms, subcellular
localization, and possible mutations. (B) These assays will be used to characterize clinical
ERa-positive primary breast carcinomas for ERRa. (C) Additionally, ERa-
positive/tamoxifen-resistant breast tumors will be examined for ERRa RNA expression,
splicing variants, and possible mutations.

Task 1. To test whether alterations in ERRa significantly correlate with the development of
clinical ERa-positive primary breast carcinomas and ERa-positive/tamoxifen-resistant
breast tumors (months 1-36)

Task 1A. Develop assays with breast cancer cell lines to look for alterations in ERRca (months 1-

12a.

Task 1A was accomplished as discussed in the year 1 report.

Task lB. Examine primary ERa-positive breast carcinomas (months 2-24).

I have expanded the scope of Task 1B by broadening the class of tumors examined from
only ERx-positive to include ERoa-negative tumors as well. Additionally, I had originally
proposed to examine approximately 100 tumors, however, the tissue repository (SPORE) at
Baylor College of Medicine has been subjected to extensive flood damage due to a hurricane
(Gary Clark, SPORE Director, personal communication). Prior to the flooding, I had already
received 40 breast cancer samples, 38 of which were suitable for analysis. Unfortunately, I
cannot receive additional samples until the tissue repository is re-established, a time period likely
beyond the duration of this fellowship. Thus, the experiment proposed in this fellowship will
necessarily be limited to those tissues already in hand.

Revised Task lB Examine random primary breast carcinomas (months 2-24).

To test whether ERRac is involved in breast carcinogenesis, a panel of 38 clinical random
breast cancers and normal mammary epithelial cells (MECs) prepared from 9 individuals were
characterized for mRNA expression of this gene by real-time quantitative polymerase chain
reaction (Q-PCR) assays. Expression of ERRI3 and ERR'y was also determined as ERR family
members share many biochemical and transcriptional activities. In addition to ERR members,
expression of ERca, ERP3, EGFR/ErbBl, ErbB2/HER2/neu, ErbB3, and ErbB4 was also
determined. These genes were analyzed for alterations in mRNA levels between tissue groups
and for correlations of expression between the genes and clinical properties indicative of tumor
aggressiveness.

Tissue sources.
The clinical tumor samples were obtained from the National Breast Cancer Tissue

Resource (SPORE) at Baylor College of Medicine (Houston, Texas) via a collaborative
arrangement with Dr. Gary Clark who also served as the study's biostatisician. Prior to our
receipt of the tumors, several clinicopathologic properties of the tumors were measured including
ER and PgR protein levels by the ligand binding assay (ER-LB and PgR-LB status, respectively),
as well as S-phase fraction and DNA ploidy by flow cytometry. We were blinded to these
clinical tumor properties until completion of our studies. The normal MECs were obtained from
Dr. Stephen Eithier at the University of Michigan-Ann Arbor and from Dr. Michael N. Gould, a
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colleague in our department at the University of Wisconsin-Madison. Because mammary gland
is a fatty tissue, it is technically very difficult to isolate high quality RNA from this source unless
the MECs are enriched from the bulk tissue. Hence, our laboratory received the normal MECs
after Dr. Either's and Dr. Gould's laboratories had isolated these MECs from reduction
mammoplasties through a process involving collagenase dispersion of the tissues, differential
centrifugation, and filtration steps.

Real-time quantitative polymerase chain reaction (Q-PCR) assays.
To measure expression of ER, ErbB, and ERR family members, real-time Q-PCR assays

were developed. In these assays, continuous measurement of fluoresence due to specific complex
formation of Sybr Green I with double-stranded PCR products versus single-stranded DNA
facilitated accurate and sensitive quantitation of initial mRNA molar amounts (6-8). The assays
were developed using an ABI 7700 sequence detection system (Applied Biosystems). Because
PCR efficiency decreases with increasing number of cycles due to limiting polymerase,
nucleotides and primers, the critical parameter recorded in the real-time Q-PCR assay is the
threshold cycle (Ct), i.e., the cycle (measured to a fractional value of the 1 minute extension
phase of the PCR) when PCR products are initially detected over background fluorescence.
Background fluorescence levels are determined from the signal intensity of no-template control
reactions. Spectral compensation of signal intensity differences among sample wells is
accomplished by the inclusion of ROX, a fluorescent reporter dye, in the enzyme reaction buffer
(Molecular Probes). To minimize non-specific product amplification, the real-time Q-PCR
assays employed HotStar Taq (Qiagen), a chemically modified form of Taq polymerase that is
completely inactive at room temperature and requires an initial 10-minute heat activation step at
950 C. PCR primers were optimized for high efficiency, i.e., to yield product sizes smaller than
150 bp and no spurious bands. PCR primers and amplicon sizes are given in Table 1. PCR
products were verified by sequence analysis.

Total RNA was isolated from the tissues, treated with DNaseI to remove contaminating
cellular DNA, and re-purified from the DNaseI. To synthesize cDNA, the RNA was incubated at
450 C with Moloney murine leukemia virus reverse transcriptase as well as poly(dT) 15 and
random hexamers as primers. To control for variability in mRNA integrity and reverse
transcriptase efficiency between tissue samples, the amount of cDNA synthesized for each
sample was quantified by trace radiolabeling of a parallel cDNA synthesis reaction carried out in
the presence of [a(x-32 P]dCTP. Incorporated and total radiolabel amounts were measured in
triplicate by trichloroacetic acid (TCA)-precipitation and scintillation counting. Calculation of
the total mass of cDNA synthesized was based on the molar amount of nucleotides present in the
reaction converted to mass and multiplied by the ratio of incorporated-to-total radiolabel. Each
Q-PCR assay employed 1 ng cDNA as template. Hence, the quantitation of cDNA mass
synthesized for each tissue sample served as the normalization control across the tissue board.

Construction of serial dilution standard curves of each specific PCR product were
included in every experiment and allowed calculation of transcript copy numbers in the unknown
samples by regression analysis. The amount of each template required for the standard curves
was determined in a similar manner as described above by trace radiolabeling with [cc- 32p]dCTP
incorporation during the PCR amplication process. The mass of PCR product synthesized was
converted to copy number according to the molecular weight of the specific amplicon's size in
base pairs. The standard curves covered 8 orders-of-magnitude. All standards and unknown
samples were assayed in triplicate.

Analyses of gene expression in breast tissues and correlations with clinicopathologicalfactors.
Using the real-time Q-PCR assays, we determined mRNA levels of ER, ERR, and ErbB

family members in a panel of 38 clinical random primary breast carcinomas and normal MECs
derived from 9 separate mammoplastic reductions. Each gene was evaluated for alterations in
mRNA expression between tissue groups by the non-parametric Kruskal-Wallis ANOVA (KW
statistic). Comparisons between tissue groups included normal MECs versus all tumors, ER-LB
positive versus negative tumors, and PgR-LB positive versus negative tumors. ER, ErbB, and
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ERR family member mRNA levels in each tissue group are depicted as copy number per ng
cDNA in Figure 1, Figure 2, and Figure 3, respectively. Analysis of whether correlations existed
among pairwise combinations of gene expression levels and clinicopathological factors were
performed by the non-parametric Spearman's Rank Correlation Coefficient, designated ps
(Spearman's rho). Absolute values of ps near 1 or 0 indicate a strong or weak correlation,
respectively, while the sign indicates a positive or negative relationship. Because the DNA
ploidy data were in the form of dichotomous observations, tumors containing aneuploid or
diploid nuclei were assigned ranks of 1 and 2, respectively. Raw data were used for ranking all
other parameters and mRNA levels. Spearman's Correlation Coefficients for all comparisons are
shown in Table 2.

The median ERu. mRNA levels were approximately 14-fold higher in all breast
carcinomas as a group compared to normal MECs (KW = 9.33, p = 0.002; Figure IA). Thus, the
Q-PCR assays showed that ERa levels are usually low in normal mammary epithelium and high
in breast tumors. This alteration in ERa expression is likely an important etiologic event in
breast carcinogenesis (9-14) [reviewed in (15)]. Moreover, the fold-difference of the median
ERa mRNA expression was larger when comparing the tumors subgrouped by ER-LB and PgR-
LB status. ERa mRNA abundance was 34-fold greater in ER-LB positive versus negative tumors
(KW = 16.09,p <0.0001; Figure IA). Since PgR is a target gene of ERa, PgR-LB-positive status
indicates the presence of functional ERa. Hence, ERa mRNA expression was approximately 31-
fold greater in PgR-LB-positive tumors compared to negative tumors (KW = 14.90, p = 0.0001;
Figure 1A). ERa mRNA levels showed a strong and significant correlation with ER protein
levels (p, = 0.859,p < 0.0001; Table 2) and PgR protein levels (ps = 0.68 4 ,p < 0.0001; Table 2)
as determined by ligand binding assays. This strong correlation between ERa mRNA levels and
ER-LB- as well as PgR-LB-status provides validation of the real-time Q-PCR assays.

ERP3 mRNA levels were not significantly increased in the tumor group compared to the
normal MEC group. However, 4 of 38 tumors exhibited ERP3 expression at levels greater than 3
interquartile regions (IQRs) above median levels. Thus, a subset of breast cancers overexpressed
ER[. The median level of ERP3 mRNA expression was approximately 3.2-fold higher in PgR-
LB-negative tumors compared to positive tumors (KW = 4.21, p = 0.040; Figure 1B). Similar to
our results, Dotzlaw et al. also found that ERP3 mRNA levels were significantly higher in PgR-
LB-negative versus positive tumors (16). Hence, ER[ expression was elevated in breast tumors
that lacked functional ERa, though ER3 was still expressed at low-to-moderate levels in ERa-
LB-positive tumors. Employing immunhistochemistry (IHC), others have reported that ERa-
positive tumors are frequently also ERP3 positive, (17-19). Several reports indicate that ERP3
exhibits prognostic significance in breast cancer, though its role is not clearly defined. Jarvinen
et aL found that ERP3-positive status by IHC was associated with negative axillary node status,
low tumor grade, and low S-phase fraction (18). On the other hand, Jensen et aL found by IHC
that tumors expressing ERP3 in the absence of ERa contained significantly higher levels of
proliferation markers than tumors expressing both ERP3 and ERa, while ERf3-negative tumors,
regardless of ERa status, contained the lowest amounts of proliferation markers (19). Thus,
Jensen et al. suggested that ERP3-positive status correlated with proliferation in primary breast
cancer. These seemingly differing conclusions may be due to Jarvinen et aL comparing all ERP-
positive versus all ERP-negative tumors while Jensen et aL further subdivided the ERP3 groups as
ERa positive or negative. Both studies showed most of the ERP3-positive tumors are also ERa
positive. Thus, in the Jarvinen et aL study, the correlations between ERP3-positive status and
indicators of low tumor aggressiveness were driven by the group being composed of a larger
number of ERP3/ERa double-positive tumors. Considering ERa and ERP3 are capable of forming
functional heterodimers, ERa-ER[3 heterodimers may exist in ERa/ER[3 double-positive tumors
and exhibit differing functional activites than ERj3 homodimers in tumors that lack ERa. Both
estrogen-bound ERa and ERP3 stimulate transcription via an AP-1 site. However, while ERa
bound with the antiestrogen tamoxifen inhibits transcription through AP-1 elements, tamoxifen-
bound ERP stimulates transcription via AP-1 sites. Along these lines, Speirs et al. compared
tamoxifen-sensitive human breast tumors to tamoxifen-resistant tumors and found ER[3 mRNA
levels were significantly higher in the resistant group (20). Taken together, it is possible that
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ERca-ERf3 heterodimers may be associated with a favurable clinical outcome while expression of
ER[3 homodimers may be associated with poor clinical outcome.

The median EGFR mRNA abundance was approximately 25-fold lower in breast tumors
relative to normal MECs (KW = 20.63, p < 0.0001; Figure 2A). Within the tumor subgroups,
EGFR mRNA median levels were approximately 7.4-fold higher in ER-LB-negative (KW =
13.54, p = 0.0002; Figure 2A) and 6.8-fold higher in PgR-LB-negative tumors (KW = 12.40,p =
0.0004; Figure 2A) relative to respective positive tumors. EGFR expression levels negatively
correlated with ER (Ps = -0.762, p < 0.0001; Table 2) and PgR protein amounts (Ps = -0.633, p <
0.0001; Table 2) as determined by ligand-binding assays. This inverse relationship between
EGFR and ERca expression in breast tumors has been previously reported (21-23). In cell culture
models, stimulation of ERa transcriptional activity leads to down-regulation of EGFR
expression (24), and, conversely, forced overexpression of EGFR leads to estrogen-independent
cellular proliferation (25). Moreover, EGFR-positive status has been linked to hormonal therapy
resistance (22, 26). Thus, a decrease in EGFR expression concomitant with an increase in ERcc
expression may be involved in breast tumorigenesis. Alternatively, EGFR overexpression in the
absence of ERca expression may also be involved in the etiology of breast cancer.

ErbB2 tended to show an increase in expression, though not statistically significant (KW
= 2.90, p = 0.089; Figure 2B), when comparing all the breast tumors as a group to the normal
MECs. However, approximately 10% of the tumors (4 of 38) expressed ErbB2 mRNA at levels
greater than 3 IQRs over the median tumor ErbB2 levels. Moreover, the maximum level of
ErbB2 mRNA was approximately 18-fold higher in the tumor group compared to the maximum
level in the normal MEC group. Overexpression of ErbB2 in 3 of 4 tumors was associated with
ER-LB negative status (Figure 2B). Thus, ErbB2 is overexpressed in a subset of tumors that have
a tendency to also lack ERa. Others have reported that ErbB2 is overexpressed, often due to
gene amplification, in approximately 10-30% of breast tumors and is a predictor of poor disease
outcome (27-29). ErbB2 overexpression is frequently associated with ER-negative status (30).
Moreover, ErbB2 overexpression has been linked to tamoxifen resistance (22, 31).

ErbB3 mRNA levels correlated with S-phase fraction (p, = 0.349, p = 0.034; Table 2),
suggesting ErbB3 promotes cellular proliferation. ErbB3 expression also correlated with ERa
mRNA levels (Ps = 0.417,p = 0.009; Table 2) and with ErbB2 mRNA levels (Ps = 0.543,p =
0.0004; Table 2). ErbB members form heterodimers as well as homodimers to recruit distinct
effector proteins involved in the mitogen-activated protein kinase (MAPK) signaling pathway;
ErbB2 is capable of forming heterodimers with EGFR, ErbB3 or ErbB4, and EGFR can
heterodimerize with ErbB3 (32-34). The correlation between ErbB2 and ErbB3 expression
suggests these members may heterodimerize in breast tumors. In fact, ErbB3 requires a
heterodimerization partner to activate signaling (34). Others have also shown a correlation
between ErbB3 and ErbB2 expression in breast cancer (35). Additionally, increased expression
of ErbB3 has been linked to lymph node metastases (36).

In a similar manner as ErbB2, ErbB4 mRNA abundance showed an inclination to be
higher, though not significantly, in all breast tumors compared to normal MECs (KW = 2.99, p =
0.084; Figure 2D). However, there was a subset of breast tumors that exhibited ErbB4
overexpression. Approximately 5% (2 of 38) of the tumors exhibited mRNA at levels greater
than 1.5 IQRs above the median tumor level, and an additional 5% (2 of 38) at levels greater than
3 IQRs above the median tumor level (Figure 2D). ErbB4 mRNA levels were elevated in ER-
LB-positive (KW = 10.55,p = 0.001; Figure 2D) and PgR-LB-positive tumors (KW = 13.48,p =
0.0002; Figure 2D) relative to the appropriate negative tumors. Further, ErbB4 mRNA levels
correlated with ER-LB (Ps = 0.530, p = 0.001; Table 2) and PgR-LB protein levels (Ps = 0.440,p
= 0.006; Table 2) as well as with ERcx mRNA levels (Ps = 0.739,p < 0.0001; Table 2).
Therefore, ErbB4-positive status was associated with the presence of functional ERa. Also,
ErbB4 mRNA amounts correlated with ErbB3 mRNA amounts (Ps = 0.416, p = 0.009; Table 2).
As with ErbB3, the observed correlations indicate that ErbB4 may activate ERa via MAPK-
mediated phosphorylation events. However, ErbB3 and ErbB4 do not heterodimerize (32, 37).
Hence the correlation between ErbB3 and ErbB4 may be due to both of these factors
independently signaling ERa. As a prognosticator, ErbB4 has been reported to be associated
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with more differentiated breast tumor histotypes than the other ErbB members (38) and may
serve as favourable biomarker in breast cancer (39, 40).

ERRa showed a tendency to be expressed at approximately 2.3-fold lower levels in the
breast tumors compared to the normal MECs, but this difference in expression was not
significant (KW = 2.63,p = 0.10, Figure 3). However, 4 of 38 tumors overexpressed ERRa; 2
tumors exhibited ERRa mRNA at levels greater than 1.5 IQRs over the median level and an
additional 2 tumors showed ERRa levels at greater than 3 IQRs over the median. ERRca mRNA
was 2.5-fold higher in the PgR-LB-neg tumor subgroup than in the PgR-LB-pos tumor subgroup
(KW = 5.36, p = 0.021, Figure 3). This significant increase in ERRca expression suggests an
alteration in the role of ERRa in a tumor subgroup that lacks functional ERa. To determine
whether ERa or ERRa was the most abundant nuclear receptor of those tested in a particular
tissue subgroup, the average mRNA expression levels of the ER and ERR family members were
ranked from the most to least abundant and presented in Figure 4. The raw data were log
transformed to normally distribute the values with similar variances. Statistical significance
between adjacently ranked genes was assessed by 1-way ANOVA with repeated measures on the
log-transformed data. As the ANOVA was performed with repeated measures, the expression
levels of each gene were paired in each tissue sample by definition. The rank ordering procedure
revealed that ERa and ERRa were significantly more abundant than ERI3, ERRP3, and ERR3y in
every tissue subgroup. As expected, ERa was the dominant receptor in the complete tumor
group as well as in the ER-LB-pos and PgR-LB-pos subgroups. However, in normal MECs and
in ER-LB-neg tumors, ERa and ERRa were expressed at equivalent levels. Additionally, ERRa
mRNA levels were found to be significantly higher than ERa levels in the PgR-LB-neg tumors
(p = 0.030). Furthermore, comparisons between ERa and ERRa raw copy numbers by the paired
t test showed that in the PgR-LB-neg subgroup, ERRa was expressed at higher levels than ERa
(p = 0.050; Figure5), again suggesting ERRa plays a prominent role in tumors lacking functional
ERa.

By Spearman coefficient analysis, ERRa expression levels significantly correlated with
ERP3 (Ps = 0.349,p = 0.032; Table 2), ErbB2 (Ps = 0.4 49,p = 0.005; Table 2), and ErbB3 levels
(Ps = 0.325, p = 0.047; Table 2). The strong correlation between ErbB2 and ERRa lends
evidence toward a functional relationship between these genes. As noted above, ErbB2
overexpression tended to occur in ER-LB-neg tumors, as did ERRa overexpression. Also as
noted above, stimulation of MAPK signalling can result in ERa phosphorylation, allowing the
unliganded form of ERa to activate transcription. The ErbB2-ERRa correlation may indicate
that ERRa is a functional target of ErbB2-mediated stimulation of MAPK signalling. Moreover,
the correlations between Erb3 and ERRa and between ErbB3 and ErbB2 indicate that ErbB3
may also potentiate MAPK signalling to activate ERRa.

ERLRa-dependent transcriptional activity has been shown to be cell line-specific. Our lab
has recently shown that ERRa antagonizes ERa-mediated transcription via an ERRa
transcriptional-repression domain specifically in MCF-7 mammary cells (Kraus et al.,
publication in preparation). On the other hand, Yang and colleagues have shown that ERRa
stimulates ERE-dependent transcription in the ERa-neg SK-BR-3 mammary cell line (41, 42).
Interestingly, MCF-7 cells contain very low levels of ErbB2 while SK-BR-3 cells contain very
high levels of ErB2 (43, 44). Taken together, these observations suggest the following
hypothesis: in cells containing low ErbB2 levels, ERRa represses transcription, while in
presence of high ErbB2 levels, ERRa activates transcription. This hypothesis predicts that
tumors containing high levels of ErbB2 and ERRa would not respond to antiestrogen therapy.
Indeed, this hypothesis provides a possible mechanism to explain why ErbB2 has been shown to
be an independent marker of tamoxifen resistance (31, 45) and why MCF-7 cells transfected with
ErbB2 develop tamoxifen resistance (46). Further, ERRa's phosphorylation state may predict
the effectiveness of the therapeutic agent Herceptin, a humanized monoclonal antibody directed
against ErbB2; hyperphosphorylated and hypophosphorylated ERRa being indicative of
Herceptin-sensitivity and Herceptin-resistance, respectively.

ERRP3 mRNA abundance was not significantly different between the tumors and the
normal MECs, though 1 of 38 tumors overexpressed ERRP3 at levels greater than 3 IQRs above
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the median level (Figure 3A). ERRP3 showed no significant differences in its median levels
among the ER-LB and PgR-LB subgroups. Interestingly, ERR[3 expression levels inversely
correlated with tumor cell S-phase fraction (ps = -0.366, p = 0.02; Table 2). The reason for this
correlation between ERR[3 and S-phase fraction is unknown, but may be suggestive of a role for
ERRP3 in blocking cellular proliferation or, perhaps, in promoting cellular differentiation. The
importance for ERRP3 in cellular proliferation and differentiation has been demonstrated by
genetic ablation of this locus in the mouse producing a severe defect in placental development
leading to lethality at embryonic day 10.5 (47). These ERR[3 knockout mice exhibited severely
abnormal chorion tissue characterized by an overabundance of trophoblast giant cells and an
extreme lack of diploid cells. In our studies, ERR[3 mRNA abundance correlated with ERP3
mRNA abundance in the breast tumors (ps = 0.575, p = 0.0002; Table 2), suggesting a possible
functional relationship between these genes. It should be noted that ERRP3 mRNA levels were
quite low but detectable in breast tissues (Figure 3A). Likewise, ER[3 mRNA levels were also
quite low compared to ERa (Figure 1B and 1A, respectively). Evidently, low ER13 mRNA
amounts are sufficient to result in biologically significant protein levels as illustrated by other
researcher's IHC-based studies (17-19). As discussed above, ERP3 expression has been linked to
multiple clinicopathological factors: coexpression of both ER13 and ERa may indicate low tumor
aggressiveness (18) whereas expression of ERP3 in the absence of ERa may indicate high tumor
aggressiveness (19). Furthermore, ER13 mRNA overexpression has been associated with
tamoxifen resistance (20). In light of the inverse relationship between ERRP3 and S-phase
fraction, ERRP may serve as a marker of low tumor aggressiveness. Conversely, the correlation
between ERR13 and ER13 suggests that coexpression of both receptors may serve as a marker of
low or high tumor aggressiveness, depending, respectively, upon whether ERa is also
coexpressed. Future studies are needed to explore this potential relationship between ERR13 and
ERP3 and whether ERR13 status would serve as a favorable or unfavorable breast cancer
biomarker.

The median mRNA level of ERRy was elevated approximately 3.1-fold in the breast
tumors compared to normal MECs (KW = 9.72, p = 0.002; Figure 3B). Thus, overexpression of
ERRy may be important in the development of breast cancer. ERRy mRNA levels were not
significantly elevated in ER-LB-positive tumors versus negative tumors. However, 5 of 6 tumors
that overexpressed ERRy were also ER-LB positive (Figure 3B). Thus ERRy overexpression or
positive status shares a relationship with ERa functionality. Lending indirect support to this
supposition, ERRy expression correlated with ErB4 expression (p, = 0.325, p = 0.049; Table 2)
and, as discussed above, ErbB4 and ERa expression correlated. The median level of ERRy
expression was approximately 2.2-fold higher in tumors typed as diploid (KW =, p = 0.035; data
not shown). Further, ERRy mRNA levels positively correlated with diploid status and negatively
correlated with aneuploid status (Ps = -0.350, p = 0.033; Table 2). As with ERRP3, the reason for
the relationship between ERRy and DNA ploidy is unknown. As noted above, ErbB4
overexpression has been associated with more histologically differentiated tumors (38) and
favorable biomarkers (39, 40). Our findings of an inverse relationship between ERRy and DNA
ploidy along with the positive relationship between ERRy and ErbB4 suggest that ERRRy-positive
status may indicate a less aggressive tumor phenotype.

Cluster analysis facilitated the ordering of similar gene expression patterns in the normal
MECs and breast tumors (Figures 6A and 6B, respectively). Tree diagrams similar to those in
sequence and phylogenetic analyses were computed based on pairwise correlations in gene
expression. Nodes connect the most similar pairs of genes and the length of tree branches
represents varying similarities in adjacently listed genes. The ordering of gene expression
profiles was performed using Cluster and TreeView software written by Michael Eisen (48). To
perform the cluster analysis, the raw data were log2 transformed and centered on each gene's
median expression level. The ordered data table is graphically depicted by colored cells
representing gene expression levels; genes that remained unchanged are colored black (log ratios
of 0), genes that increased in expression (increasingly positive log ratios) are colored in
increasing intensities of red, and genes that decreased in expression (increasingly negative log
ratios) are colored in increasing intensities of green. In the normal MECs, cluster analysis
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indicated a relationship among ErbB2, ERRa, EGFR and ERa and a relationship among ErbB4,
ErbB3 and ERRy (Figure 6A). In the breast tumors, cluster analysis indicated a relationship
among ErbB3, ErbB2, ERRa, and EGFR; a second relationship among ErbB4, ERa, and ERR'y;
and a third relationship between ERRP3 and ER[ (Figure 6B). Interestingly, these results indicate
that ErbB2 and EGFR may signal to ERa in normal MECS, whereas in the tumors, ErbB4 may
play a more important role in signaling to ERa. In both tissue groups, ERRa clustered with
ErbB2, again indicating a common functionality between these genes. These results also suggest
that overexpression of ERRa may be a negative prognostic indicator.

Task 1C. Examine wild-type ERa/tamoxifen-resistant breast tumors (months 25-36).

Examination of tamoxifen-resistant breast tumors had been scheduled to be accomplished
following the completion of the analysis of random primary breast tumors as described in Task
lB. I had originally arranged with Dr. Gary Clark to obtain these tamoxifen-resistant tumors
from the SPORE at Baylor. Unfortunately, as noted above, the tissue repository was
unsalvageable following severe flood damage. Hence, it is not possible to accomplish Task 1C
unless another source of these samples is secured. Since it is unlikely to obtain these extremely
rare and valuable tamoxifen-resistant fresh frozen tissue within the time period of this
fellowship, I propose that Task 1C be removed from the proposal's statement of work.

Specific Aim II and Specific Aim III
Aims II and III had been revised as discussed in the year 1 interim report. Alterations to the tasks
associated with these aims have already been approved in a updated Statement of Work.

Revised Specific Aim II - To test whether c-erbB2 induced activation of ERRa-dependent
transcription may contribute to the TAM-resistant phenotype by generating and
characterizing MCF-7 sublines stably-transfected with plasmids inducibly expressing wild-
type or dominant-negative ERRoa variants in the presence and absence of activated c-
erbB2.

Revised Task II. Establishment MCF-7 cell sublines that inducibly express ERRa variants
in the presence and absence of activated c-erbB2, thereby facilitating examination of
ERRa's potential role in a defined TAM-resistant cell line model system (months 15-36).

Revised Task 2A. Establishment of MCF-7 cell sublines inducibly expressing ERRa variants in
the presence and absence of activated c-erbB2 (months 15-24).

Establishment of cell lines that inducibly express ERRa variants is currently underway but not
yet ready to be reported.

Revised Task 2B. Examination of ERRo's potential role in c-erbB2-mediated TAM-resistant

MCF-7 sublines (months 25-36).

This task has yet to be accomplished.

Revised Task 2C. Characterization of ERRa's phosphorylation status (months 25-36).

This task has yet to be accomplished.

Revised Specific Aim III -To Begin to Elucidate Mechanisms By Which ERRct May Play
Roles in Breast Carcinogenesis By Identifying Estrogen-responsive Breast Cancer
Prognosticator Genes Which Are Transcriptionally Modulated Through ERRa and
Determining the Effects of ERRox on Transcriptional Regulation of These Genes.

11



Revised Task 3A. Characterization of putative ERRa-binding sites by GMSAs and immunoshift
assays (months 25-36).

Identification of multiple genes whose promoters contain ERRac-response elements by GMSAs
has been discussed in the year 1 interim report.

Revised Task 3B. Evaluation of ERRa-binding sites using heterologous reporter genes (months
25-36).

This task has yet to be accomplished.
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KEY RESEARCH ACCOMPLISHMENTS

"* ERRcL was overexpressed in approximately 10 % of the breast tumors (Figure 3A).

"* ERRor expression was significantly elevated in PgR-LB-neg tumors compared to positive
tumors (Figure 3A).

"* ERRcL mRNA levels were greater than ERcc, ERP3, ERRP3, and ERRy levels in PgR-LB-neg
tumors (Figure 4 and Figure 5).

"* ERRc expression correlated with ErbB2, ErbB3, and ER[3 expression in breast tumors by
Spearman coefficient analysis (Table 2).

"* ERRc• expression patterns ordered with ErbB2, ErbB3 and EGFR expression by cluster
analysis (Figure 6).
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REPORTABLE OUTCOMES

Publications

Ariazi, E. A., Clark, G.M., and Mertz, J. E. Estrogen-related Receptors: Possible Novel
Biomarkers in Breast Cancer (manuscript in preparation).

Patents

Mertz, J. E. and Ariazi, E. A. Estrogen-related Receptors as Biomarkers in Breast Cancer. (U.S.
Patent Application in preparation).

Awards

A travel award to the 2001 Gordon Research Conference on Hormone Action was granted.
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CONCLUSIONS

Real-time Q-PCR assays have been developed and used to study ERRx mRNA
expression in 38 clinical random breast cancers and normal MECs from 9 individuals. ERRcc
was overexpressed in approximately 10 % of the tumors. ERRa expression was significantly
elevated in PgR-LB-neg tumors compared to positive tumors. ERRca mRNA levels were
significantly greater than ERa, ERj3, ERRP and ERRy levels in PgR-LB-neg tumors. These
findings suggest ERRa plays a more prominent role in tumors lacking functional ERa than in
other tumors. ERRa expression significantly correlated with ErbB2, ErbB3 and ERP3 expression
by Spearman coefficient analysis. ERRa expression patterns were ordered with ErbB2, ErbB3
and EGFR expression patterns by cluster analysis. These findings suggest that ERRa may be a
target of ErbB signaling. Our lab has recently demonstrated that ERRa represses ERac-mediated
transcription via EREs specifically in MCF-7 cells, an ErbB2-negative cell line; while others
have shown that ERRa activates transcription independent of ERa in SK-BR-3 cells, an ErbB2-
positive cell line. ErbB members signal via the MAPK pathway and ErbB2 has been associated
with tamoxifen resistance. Taken together, the following hypothesis was developed: ERRa
antagonizes transcription in tumors containing low MAPK activity, and conversely, ERRa
potentiates transcription independent of ERa in tumors containing high MAPK activity due to
overexpressed ErbB2, ErbB3, and/or EGFR Therefore, high levels of ERRa, or potentially
phosphorlyated isoforms of ERRa may indicate resistance to hormonal and/or ErbB2-based
therapies.
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APPENDICES

Table 1. Real-time Q-PCR Primer Sets.

ERGL Product =100 bp
5'ERa, 5'-GGA GGG CAG GGG TGA A-3'
3'ERa 5'-GGC CAG GCT GTT CTT CTT AG-3'

ERJ3 Product =137 bp
5'ERI3 5'-TTC CCA GCA ATG TCA CTA ACT T-3'
3'ERf3 5'-TTG AGG TTC CGC ATA CAG A-3'

EGFR Product = 104 bp
5'EGFR S'-GTG ACC GTT TGG GAG TTG ATG A-3'
3'EGFR 5'-GGC TGA GGG AGG CGT TCT C-3'

ErbB2 Product = 82 bp
5'ErbB2 5'-GGG AAG AAT GGG GTC GTC AAA-3'
3'ErbB2 5'-CTC CTC CCT GGG GTG TCA AGT-3'

ErbB3 Product = 106 bp
5' ErbB3 5'-GTG GCA CTC AGG GAG CAT TTA-3'
3' ErbB3 5'-TCT GGG ACT GGG GAA AAG G-3'

ErbB4 Product = 105 bp
5' ErbB4 5'-TGC CCT ACA GAG CCC CAA CTA-3'
3' ErbB4 3'-GCT TGC GTA GGG TGC CAT TAC-3'

ERRcc Product = 100 bp
5'ERRcic 5'-AAA GTG CTG GCC CAT TTC TAT-3'
3'ERRcc 5'-CCT TGC CTC AGT CCA TCA T-3'

ERRj3 Product = 144 bp
5' ERRP 5'-TGC CCT ACG ACG ACA A-3'
3'ERRf3 5'-ACT CCT CCT TCT CCA CCT T-3

ERRy Product = 67 bp
5'ERRy 5'-GGC CAT CAG AAC GGA CTT G-3'
3'ERR'y 5'-GCC CAC TAC CTC CCA GGA TA-3'
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Figure 1. ER family member mRNA levels in breast tissues. (A) ERoc levels. (B) ERP3 levels.
The notched box shows the median, lower and upper quartiles, and confidence interval around
the median. The dotted-line connects the nearest observations within 1.5 inter-quartile ranges
(IQRs) of the lower and upper quartiles. Far outliers, over 3.0 IQRs away, are denoted with a 0,
and near outliers, between 1.5 and 3.0 IQRs away, are denoted with a +. Statistical significance
determined by the non-parametric Kruskal-Wallis (KW) ANOVA.
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Figure 3. ERR family member mRNA levels in breast tissues. (A) ERRcc levels. (B) ERRI3
levels. (C) ERRy levels. The notched box shows the median, lower and upper quartiles, and
confidence interval around the median. The dotted-line connects the nearest observations within
1.5 inter-quartile ranges (IQRs) of the lower and upper quartiles. Far outliers, over 3.0 IQRs
away, are denoted with a 0, and near outliers, between 1.5 and 3.0 IQRs away, are denoted with
a +. Statistical significance determined by the non-parametric Kruskal-Wallis (KW) ANOVA.
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Figure 4. Rank-order of mRNA expression. (A) ER and ERR family members. (B) ErbB
family members. Gene expression values were log transformed to normally distribute the data.
Genes were ranked in descending order according to their mean expression levels and presented
along with their corresponding standard errors. Significance was assessed between pairs of
adjacently ranked genes by 1-way ANOVA with repeated measures. Significant differences in
gene expression levels atp < 0.05 are indicated by arrows.
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Figure 5. Comparison between ERcx and ERRxc mRNA levels within the same tissue sample.
Significance assessed by the paired t test.
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Figure 6. Cluster analysis. (A) Normal MECs. (B) Random Primary Breast Tumors. Tree
diagrams represent similarities in gene expression patterns. Gene expression levels
unchanged from the median level are displayed as black, elevated expression levels are
displayed in increasing intensities of red, and reduced expression levels in increasing
intensities of green.
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A: ',ý MEDICA•D %IATERIEL CCM W ' %D

MCMR-RMI-S (70-1y) 28 July 03

MEMORANDUM FOR Administrator, Defense Technical Information
Center (DTIC-OCA), 8725 John J. Kingman Road, Fort Belvoir,
VA 22060-6218

SUBJECT: Request Change in Distribution Statement

1. The U.S. Army Medical Research and Materiel Command has
reexamined the need for the limitation assigned to technical
reports written for this Command. Request the limited
distribution statement for the enclosed accession numbers be
changed to "Approved for public release; distribution unlimited."
These reports should be released to the National Technical
Information Service.

2. Point of contact for this request is Ms. Kristin Morrow at
DSN 343-7327 or by e-mail at Kristin.Morrow@det.amedd.army.mil.

FOR THE COMMANDER:

Encl PHYL ' M. RINEHART
Deputy Chief of Staff for

Information Management
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